Learning Transformation Rules for Semantic Parsing

نویسندگان

  • Rohit J. Kate
  • Yuk Wah Wong
  • Ruifang Ge
  • Raymond J. Mooney
چکیده

This paper presents an approach for inducing transformation rules that map natural-language sentences into a formal semantic representation language. The approach assumes a formal grammar for the target representation language and learns transformation rules that exploit the non-terminal symbols in this grammar. Patterns for the transformation rules are learned using an induction algorithm based on longestcommon-subsequences previously developed for an information extraction system. Experimental results are presented on learning to map English coaching instructions for Robocup soccer into an existing formal language for coaching simulated robotic agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Transformation-based learning for semantic parsing

This paper presents a semantic parser that transforms an initial semantic hypothesis into the correct semantics by applying an ordered list of transformation rules. These rules are learnt automatically from a training corpus with no prior linguistic knowledge and no alignment between words and semantic concepts. The learning algorithm produces a compact set of rules which enables the parser to ...

متن کامل

Discourse Parsing: Learning FOL Rules based on Rich Verb Semantic Representations to automatically label Rhetorical Relations

We report on our work to build a discourse parser (SemDP) that uses semantic features of sentences. We use an Inductive Logic Programming (ILP) System to exploit rich verb semantics of clauses to induce rules for discourse parsing. We demonstrate that ILP can be used to learn from highly structured natural language data and that the performance of a discourse parsing model that only uses semant...

متن کامل

Learning Transformation Rules for Semantic Query Optimization: A Data-Driven Approach

Learning query transformation rules is vital for the success of semantic query optimization in domains where the user cannot provide a comprehensive set of integrity constraints. Finding these rules is a discovery task because of the lack of target. Previous approaches to learning query transformation rules have been based on analyzing past queries. We propose a new approach to learning query t...

متن کامل

Abductive Matching in Question Answering

We study question-answering over semi-structured data. We introduce a new way to apply the technique of semantic parsing by applying machine learning only to provide annotations that the system infers to be missing; all the other parsing logic is in the form of manually authored rules. In effect, the machine learning is used to provide non-syntactic matches, a step that is ill-suited to manual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004